

MAJIS IR Filter Update

MAJIS IR Filter Update

On behalf of the IAS engineering team

09-10/10/2019

Status update:

Down-selection of 4 FMFS based on optical measurements by Viavi, visual inspection of surface quality, mechanical compliancy

Ancillary measurement strategy at IAS:

μ-FTIR set up in transmission : pixel scale ~ MAJIS pixel
Collaboration with SOLEIL Synchrotron facility & astrochemistry team at IAS
~10 full days of measurements on FMFS, not accounting tests and measurements on QMs

Ambient measurements, then corrected for temperature (@90K)

LVF segment

BPF segment

Filter transmission

Example for 3 FMFS

FMFS *effective* transmission assumes near perfect alignment of the filter with respect to the grating dispersion

Filter FWHM

A decreasing FWHM in %CWL towards 5 µm was not foreseen, it is a good thing!

Filter OD

We injected the actual out-of-band transmission into the radiometric performance model to verify that the thermal background is not a performance limiter

Filter CWL gradient

Gradient in the > 5 μ m region may not seem fully compliant with spec, but the FWHM width and passband profile allows for more tolerance on the CWL position

Filter CWL gradient

Gradient in the > 5 μ m region may not seem fully compliant with spec, but the FWHM width and passband profile allows for more tolerance on the CWL position

Optical performance: results

Verification using the SOLEIL/IAS bench:

Filter intrinsic performance parameters	Compliance
Spectral gradient of Central Wavelength of the LVF Based on LDO-provided grating dispersion at filter plane in 2018 MAJIS IR Filter dispersion shall be 0.180 μm/mm +/- 1%	ОК
Transmission of the LVF + BPF * λ < 3.5 μm T ≥ 50% (goal T ≥ 70%) * λ > 3.5 μm, T ≥ 30% (goal is T ≥ 50%)	ОК
Spectral smile of the LVF Goal: \leq 0.030 µm at any position of the active surface	ОК
FWHM of the LVF Target value of 4,5% ±10% of the CWL	ОК
Out-of-band rejection OD2 (goal OD3) on average outside in-band transmission	ОК

Spectral mapping done at SOLEIL was also injected into the MAJIS radiometric performance model to consolidate impact of filter performance

End-to-end performance

Example: One 100 ms sub-integration for Europa flyby in HR mode

 \rightarrow Negligible impact. Compatible with CDR performance.

Good filter alignment along the dispersive direction is required to be in tune with the grating dispersion

Knowledge of filter absolute optical position & its error both should be to within < 200 μ m & < 200 μ m rms

AI: Specific discussion with LDO required